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In their modern form memory theories of creep are to a significant extent constructed on the basis of formal consider- 
ations, in particular,  the principle of superposition, according to which the effects of the stresses and temperature  act ing 
at a given moment g are not disturbed by stresses applied at other moments of t ime  or temperature  changes occurring at 
other moments of t ime .  That the appl icat ion of the memory theory to metals nevertheless leads to satisfactory results in 
a number of important cases is demonstrated below. 

Beginning with Volterra,  various general izat ions of the Boltzmann-Volterra s  ...." 
memory theory have been proposed for the computat ion of the nonlinear relat ion / ( 5 / /  

between creep and stress [1]. The starting equation of the nonlinear theory may be t ~ !  
written in the form / 

/ %~ (t) = % (0 + ;i~ (t), 

~ (t) = I q ~  it - -  ~, %~, (4) T (~)l d~ O )  0 t~ ,- t 
0 

where eij  is the elast ic  deformation,  linked with the stress by Hooke's Law, supplemented k,,,.Z 
by temperature  terms; Pij is the creep,  and T is the temperature .  

It will be assumed that the form of QIj in equation (1) is such that the theore t ica l  and Fig. 1. 

exper imenta l  curves coincide for invariable stresses and temperature .  

Let the values oij - oij  (1) and T = T~, which are invar iable  when t < q ,  assume the values c~ij = oij (a) and T = 
= T~ at the moment  t = t 1. I t  follows from equation (1) that  

t 

e~j (t) = e i j  (t) -5 fQi.i (t - -  ~, aal~(1),T1) d~ (t < h) 
0 

tt t 

eij(t)-----eij ( t ) +  f Q t j  ( t - -~,z=~(1) ,T~)d~+ f Q ~ i ( t - - ~ ,  z~(2) ,T2)d~ ( t > h ) .  
0 tl  

If  on the right side of the lat ter  equation,  we first add and then subtract the t e rm 

t 

h 
we get 

f f 

el~ (t) = et5 (t) --}- f Q ij(t - -  ~ ' ~ a lx), T1) d~--  f Qij(t  - -  ~,% (1), T1) d~ "4- 
0 tl 

t 

+ f ( t -  T,)d  (t  > t l )  . 

t,  

Hence in order to obtain the theore t ica l  curves for the comple te  process with t > t I (broken l ine in Fig. 1), it is 

necessary to add the ordinates of the curves shown by a solid line in Fig. 1 for each of the six planes r  t :  

__ ,J1) T = TI), 3 -- (~ ~(2) T = T2) 1 - = T = Z - -  - -  = �9 

The same constructions are also possible for repeated stepwise changes in stresses and temperature ,  if we have creep 

curves for invar iable  ~  and T, equal  to those act ing at every step. Theore t ica l  curves in the coordinates ( p i j , t )  may be 
constructed analogously.  In fact ,  if  a thermal  plastic deformation enters into ei j  , in addit ion to e las t ic  deformation,  the 

construction should be based precisely on the coordinates (P ip  t). 

This graphic method general izes  the method proposed by Leaderman [2] for the construction of a theore t ica l  c u r v e -  

125 



for the one-dimensional process, in which a stress is periodically applied to the specimen and then removed. 
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A comparison of the memory theory with experimental data ['3-6] on pure copper, carbon steel, and duralumin in 
simple tension for stepwise variation in stress or temperature disclosed that, in the case of decreasing stress or tempera- 
ture, the theory shows much greater recovery than that observed experimentally. In the case of increasing stress or tem-  
perature, the memory theory leads to the same satisfactory results as the theory applied in [7]. The application of the 
Nadai-Davis strain-hardening theory gives worse results for increasing stress. 
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Fig. 3. 

The memory theory is in good agreement with the experiments of Johnson, Henderson and Mathur [8] for thin-walled, 
tubular specimens of carbon steel and aluminum and magnesium alloys. The specimens were loaded at a fixed tempera- 
ture with a steady axial tensile stress and a stepwise increasing torque. By way of example, Fig. 2 shows the experiment- 
al curves for the creep of magnesium alloy at 20~ (solid lines), the curves for the memory theory (broken lines), and 

the curves for the theory used in [7] (dot-dash lines) in the coordinate systems (p,t) 
6 and (7, t) (p is the axial creep and y the shear creep). The axial stress was equal to 

~'I03 1~-~ 472 kg /cm 2, while the tangential stress increased in steps of 94.5 kg/cm ~ in each 
! ~ "  24-hour period. The fact that the memory theory is in better agreement with the 

. t  above results than the theory used in ['7] is attributable to the fact that the former 
4 . . f * "  . '  . ~ _ _ 4  ="~r~ qualitatively, and correctly, takes into account the deformation anisotropy due to 

/ , / . ~ . . j ' / "  ~.--v " ~ - i  r  combined loading, 'which the other theory [7] does not. 

/ " ~ - -  Considerable deformation anisotropy develops when the stress changes sign. Thus, 
/ . ~  in the case of alternate forward and reverse torsion of thin-walled tubular specimens, 

i i p  the directions of the principal stresses change instantaneously by 90 ~ . In such experi- 
5 ments softening rather than the expected strain hardening is observed when the t a n -  f~ 

4 f f  ~ =2--- gential stress r changes sign [9]. This effect is also considered by the memory theory. 
~-=-:"--: '=--=: The results of experiments [9, 10] on carbon steel and duralumin (solid lines) and 

ZO 40 t~ hr 
curves based on the memory theory (broken lines) are shown in Figs. 3 and 4, respee- 

Fig. 4. tively. The shear creep is denoted by y. The carbon steel was tested at 500~ and ~" = 
= 4-12.8 kg /mm ~. Alloy specimens 19, 5, 4, and 16 (D16T duralumin) were tested at 

150~ and 1- = 10.1, 11.56, 14. 00, and 14.74 kg /mm 2, respectively. The moment the stress changed sign was taken as 
the origin of the t ime readings. The strain accumulated up to this point was taken as the new origin of the deformation 
readings. The strain accumulated up to the t ime of the first measurement is not considered. The theory of [7] (dot-dash 
line) describes the results of the experiments much less satisfactorily than the memory theory. 

The following conclusions with respect to the memory theory and the theory used in [7] can be made on the basis of 
the experiments discussed. In the case of simple loading with increasing stress or temperature the application of the mem- 
ory theory and the theory of [7] leads to almost equally satisfactory results. With decreasing stress or temperature, the 
theory of [7] gives better results. In the case of combined loading with non-decreasing stresses, the memory theory gives 
better results. 
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